If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2+2w-432=0
a = 3; b = 2; c = -432;
Δ = b2-4ac
Δ = 22-4·3·(-432)
Δ = 5188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5188}=\sqrt{4*1297}=\sqrt{4}*\sqrt{1297}=2\sqrt{1297}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1297}}{2*3}=\frac{-2-2\sqrt{1297}}{6} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1297}}{2*3}=\frac{-2+2\sqrt{1297}}{6} $
| 12=x-12/9 | | 28=-8w+6w+24 | | x=-3(5) | | 15.4+x=21.2 | | 30/60=x/60 | | -12+7x+1=-5(x+1)+6 | | 6=r-12 | | 4x+1=2x+2+2x-1 | | x2+3x+18=0 | | x2-5x-34=0 | | 9x2+24x+14=0 | | (3x-5)+(5x+25)=180 | | -3x2+13x=0 | | 6n+5=31 | | 5x+2x-1=4x+29 | | F=-10c+32 | | √7x+6=-8 | | 2^x2-1=8 | | 16t^2-27t+1=0 | | 4.3x+2.5-2.2-2.1x=O | | 5(6x-7)=44 | | x-13=6x-12 | | X.X-3x-40=0 | | (4x+1)+17=180 | | 4x+17+1=180 | | -3(2x-6)=3x-54 | | 6x-7=-7+6x | | 3(2x-4)=3(2x+4) | | 3(2x+1)=2(2x+1) | | 5x-2x+6=2 | | 8x-7x=x+8 | | 4x+2-x=3(x+2/3) |